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A Bloch-wave model of dopant-atom scattering is developed using perturbation

theory for parallel illumination in a transmission electron microscope. Dopant-

atom scattering causes a change in the Bloch-wave excitations, with transitions

from one Bloch state to another being governed by the amplitudes of the Bloch

states at the dopant-atom position. The scattering mechanisms therefore depend

on whether the dopant atom is substitutional or interstitial as well as the

orientation of the crystal. The model is used to calculate the electron

wavefunction for substitutional and interstitial Mo atoms in [111]- and [001]-

oriented body-centred cubic Fe and the results overall are consistent with

multislice simulations. However, subtle differences are also observed. For

example, in the Bloch-wave model the phase change of the incident electrons

(with respect to the perfect crystal) due to dopant-atom scattering varies with

the crystallographic orientation while in multislice theory the phase change is

constant. This is likely to be due to the assumptions made in the Bloch-wave

model, such as neglect of elastic diffuse scattering. Apart from providing a

fundamental understanding of dopant-atom scattering, the model can also

potentially be extended to analyse dopant-atom imaging in a scanning

transmission electron microscope.

1. Introduction

The distribution of dopant atoms has an important role in

optimizing the performance of semiconductor devices (Voyles

et al., 2002, 2003, 2004; van Benthem et al., 2005; Allen et al.,

2008) and catalysts (Nellist & Pennycook, 1996; Shannon et al.,

2007), as well as in grain-boundary engineering (Shibata et al.,

2004). In all of the above citations, high-angle annular dark

field (HAADF) microscopy in a scanning transmission elec-

tron microscope (STEM) was used to image dopant atoms

with large atomic number. High-resolution electron micro-

scopy (HREM) has also had some success in this area.

Examples include Gd atoms in metallofullerene molecules

(Suenaga et al., 2000) as well as oxygen vacancies in perovskite

structures and high-Tc YBCO superconductors (Jia et al.,

2003). Site occupancies of dopant atoms can also be deduced

analytically through techniques such as atom location by

channelling-enhanced microanalysis (ALCHEMI) (Spence &

Taftø, 1983; Jones, 2002; Sarosi et al., 2003; Mendis & Hemker,

2007). As single-atom detection becomes ever more feasible, it

is important to better understand the scattering mechanism(s)

of the incident high-energy electrons by the atom of

interest.

Traditionally, the effect of dopant atoms on the transmitted

electron wavefunction has been simulated using the physical-

optics-based multislice algorithm (Voyles et al., 2004; Shannon

et al., 2007; Cowley & Moodie, 1957; Kirkland, 1998; Loane et

al., 1988). This method is applicable to perfect crystals as well

as supercells containing defects, dopant atoms etc., but does

not readily provide insight into the fundamental electron-

scattering mechanisms. Alternatively, the Bloch-wave method

(Hirsch et al., 1965) decomposes the electron wavefunction

into components that have a direct relationship with the

underlying symmetry of the crystal and provides an intuitive

understanding of electron beam–specimen interactions. Bloch

waves are more suitable for perfect crystals but can be applied

to imperfect crystals containing slowly varying elastic strain

fields using the Howie–Whelan equation within the column

approximation (Hirsch et al., 1965; Mendis & Hemker, 2008).

However, the Howie–Whelan equation is not applicable to

electron scattering from a dopant atom where the perturbing

force is the change in local electrostatic potential rather than

strain. Since scattering from a single dopant atom is weak

when compared to all other host atoms within the crystal, the

Bloch waves for the imperfect crystal must be similar to those

of the perfect crystal without the dopant atom. The wave-

function of the imperfect crystal can therefore be determined

from the Bloch-wave solutions for the perfect crystal using

standard quantum-mechanical perturbation theories (Bohm,

1951).



The aim of this paper is to develop a Bloch-wave pertur-

bation theory that captures the physics of electron scattering

by dopant atoms. Perturbation theory has been used before in

Bloch-wave calculations [see, for example, references in

Spence & Zuo (1992) as well as Wilkens (1964) and Howie &

Basinski (1968)]. In particular, a result similar to equation (9)

(see x2.1), which is the key finding of the present study, can be

found in the paper by Howie & Basinski (1968). The theory

developed in this paper assumes parallel illumination but is

easily extended to STEM imaging by treating each partial

plane wave within the electron probe individually. The

predictions of this model are compared with the Howie–

Whelan equation where scattering is due entirely to elastic

strain. Numerical examples of scattering from a single Mo

atom in body-centred cubic (b.c.c.) Fe in [111] and [001]

orientations are then presented. Simulations are carried out

for an Mo atom placed at the octahedral interstitial site of the

b.c.c. lattice as well as at substitutional positions. Finally, the

numerical results are qualitatively compared with multislice

simulations to test the accuracy of the perturbation model.

2. Elastic scattering from dopant atoms

2.1. Perturbation theory

Let the incident electrons have wavevector components (kx,

ky, kz) with the z axis/xy plane being parallel/perpendicular to

the optic axis. The electron wavefunction  in the crystal is

governed by the steady-state Schrödinger equation (Hirsch et

al., 1965):

�
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where V and E are the crystal potential and electron energy,

respectively, h is Planck’s constant, e is the magnitude of the

charge of an electron and m is its relativistic mass. The energy

E is given by

E ¼ ðh2=2mÞðk2
x þ k2

y þ k2
zÞ: ð2Þ

For high-energy electrons, the longitudinal component of the

wavevector undergoes very little change within the crystal and

hence the wavefunction  can be expanded as (Kirkland,

1998; Cowley, 1988)

 ðx; y; zÞ ¼ ’ðx; y; zÞ expð2�ikzzÞ; ð3Þ

where the exponential term represents propagation of the

electron in vacuum and ’ðx; y; zÞ represents the effect of the

crystal on the final wavefunction  . Substituting equation (3)

in (1) gives (after neglecting the @2’=@z2 term) (Kirkland,

1998; Cowley, 1988)
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In a periodic crystal the potential V is expressed as a Fourier

series over all reciprocal-lattice vectors (Hirsch et al., 1965). In

many cases the more important reciprocal vectors all lie in the

zero-order Laue zone (ZOLZ) plane (Spence & Zuo, 1992).

This is the so-called projection approximation and is valid for

small unit cells and for high-energy electrons with a flat Ewald

sphere. Within the projection approximation ’ can be shown

to be (Hirsch et al., 1965)

’ðx; y; zÞ ¼ bðx; yÞ expð2�i�zÞ; ð5Þ

where � represents the change in the electron longitudinal

wavevector component due to channelling and b(x, y) is the

projection of the wavefunction in the xy plane (Hirsch et al.,

1965). Equation (5) represents the Bloch-wave solutions for a

perfect crystal.

Consider the effect of adding a dopant atom to an otherwise

perfect crystal. It is assumed that the dopant atom has a

different atomic number, and hence electrostatic potential, to

the host atoms but produces negligible strain in the crystal

lattice. The potential V for the imperfect crystal is therefore

Vo þ �ðx; y; zÞ, where Vo is the potential of the perfect crystal

and � is the ‘excess’ potential due to the dopant atom. If � is

small, perturbation theory can be used to express the solution

to equation (4), as applied to the imperfect crystal, in terms of

the corresponding solutions for a perfect crystal. Since z is

linearly related to time t by the electron velocity, the ‘method

of variation of constants’ in time-dependent perturbation

theory (Bohm, 1951) is used in the analysis as described below.

In the column approximation, high-energy electron scat-

tering is assumed to take place within only a small volume of

material (Hirsch et al., 1965). A dopant atom will therefore

modify electron scattering only in the column centred around

it (see x3.2 for a more detailed discussion of this assumption).

All other columns have scattering characteristics similar to

that of the perfect crystal and are unaffected by the dopant

atom. The total wavefunction in these columns is a linear

combination of the individual Bloch-wave solutions for a

perfect crystal. Since for small perturbations the electron

wavefunction in the column containing the dopant atom must

be similar to that for the neighbouring ‘perfect crystal’

column, the perturbed wavefunction  0 in the former column

can be expressed as (Bohm, 1951)

 0ðx; y; zÞ ¼

�P
p

"pðzÞ’ pðx; y; zÞ

�
expð2�ikzzÞ; ð6Þ

where "pðzÞ is the excitation of the pth perfect-crystal Bloch

wave [i.e. "pðx; y; zÞ] at depth z. Unlike a perfect crystal, the

Bloch-wave excitations are now a function of z owing to the

perturbing potential of the dopant atom. Equation (6) is

similar to equation (3). Hence for the imperfect crystal the

term within the square brackets of equation (6) replaces ’ in

equation (4) with V being modified to Vo þ �ðx; y; zÞ. Hence

we get
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Since the last term within the left-hand pair of brackets is

equal to the first term within the right-hand pair of brackets in

the first line of equation (7) [see equation (4)], we have after

expanding the pth Bloch wave according to equation (5)X
p

d"p

dz
bp expð2�i� pzÞ ¼

2�ime

h2kz

X
p

�ðx; y; zÞ"pbp expð2�i� pzÞ:
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Multiplying both sides of the above equation by the complex

conjugate of the qth Bloch wave [i.e. bq� expð�2�i�qzÞ; the �

symbol denotes the complex conjugate] and integrating over

the xy plane results in (Bohm, 1951)

d"qðzÞ

dz
¼

2�ime

h2kz

X
p

"p
ðzÞ exp 2�i � p

� �q
ð Þz½ �

�

Z
bp�ðx; y; zÞbq�dx dy; ð9Þ

where the orthonormal property of the Bloch waves was used

to evaluate the integrals, i.e.R
bpðx; yÞbqðx; yÞ

� dx dy ¼ �pq; ð10Þ

where �pq is the Kronecker delta.

Equation (9) represents electron scattering due to the

dopant atom. In the next section, the implications of this

equation are discussed and compared to the Howie–Whelan

equation.

2.2. Comparison of dopant-atom scattering with the Howie–
Whelan equation

The perturbation theory developed in the previous section

describes electron scattering due to a change in the local

electrostatic potential, while the Howie–Whelan equation is

valid for the case of a slowly varying elastic strain field. It is

therefore interesting at this point to compare the two forms of

scattering. The Howie–Whelan equation in matrix form is

(Hirsch et al., 1965)

d"

dz
¼ 2�i expð�2�i� pzÞ

	 

C�1 �0g

	 

C expð2�i� pzÞ
	 
� �

"; ð11Þ

where " is a column matrix of the excitations of individual

Bloch waves at a depth z, C is the matrix of Bloch-wave

Fourier coefficients and the curly brackets { } denote diagonal

matrices. Furthermore, �0g ¼ @ðg � RÞ=@z, where R is the local

displacement due to the elastic strain field. Equation (11)

indicates that the excitation of a given Bloch wave q partially

depends on scattering from Bloch wave p; scattering between

Bloch waves from different branches of the dispersion surface

(i.e. p 6¼ q) is known as interband scattering, while intraband

scattering represents scattering along the same branch of the

dispersion surface (i.e. p = q) (Hirsch et al., 1965). If Sqp(z)

represents the partial scattering contribution from Bloch wave

p to Bloch wave q at a depth z, then by evaluating the terms

within the square brackets of equation (11) it is easy to show

that (Nellist et al., 2008)

SqpðzÞ ¼ "
pðzÞ

P
g 6¼0

Cp
g Cq

g�
0
g exp 2�i � p � �qð Þz½ �; ð12Þ

where we have ignored the constant factor 2�i in equation

(11).

The exponential term in equation (12) represents the phase

change undergone by an electron scattered from one branch

of the dispersion surface to another (Hirsch et al., 1965). This

phase term is also observed for scattering by a dopant atom

[equation (9)]. The magnitude of the scattering is, however,

different for equations (9) and (12). In equation (9) for

example, for a given Bloch-wave excitation "pðzÞ, the scat-

tering magnitude is determined by the integral term; hence for

scattering to be large both Bloch waves p and q must have

significant amplitude at the site of the dopant atom. This

means that for substitutional dopant atoms the integral has a

large value for intraband scattering of the 1s Bloch state which

channels down the atom columns. Furthermore, for a given

Bloch-wave excitation, intraband scattering of the non-1s

states is relatively weaker and interband scattering will be

predominantly between 1s and other Bloch states. The scat-

tering mechanisms are, however, different for an interstitial

dopant atom that does not overlap with any host atoms when

the crystal is viewed in projection; here the integral is small for

intraband scattering of the 1s state and likewise interband

scattering will be predominantly between the non-1s states.

In the case of elastic strain, for a given Bloch-wave excita-

tion "pðzÞ the magnitude of the scattering is determined by the

Fourier coefficients of Bloch waves p and q weighted by the

local deformation �0g [equation (12)]. Nellist et al. (2008) have

examined Bloch-wave scattering along symmetry zone axes

(i.e. zone axes such as [001] and [111] in face-centred cubic and

b.c.c. crystals where the main Bragg diffracted beams are

related by rotational symmetry) in a non-absorbing crystal and

have shown that intraband scattering is forbidden irrespective

of the nature of the elastic strain field. Furthermore, interband

scattering is restricted to Bloch waves that satisfy the dipole

selection rule i.e. �l = �1, where l is the angular momentum

quantum number assigned to a given Bloch wave (Buxton et

al., 1978). Hence interband scattering can take place from an

s-type Bloch state to a p-symmetry Bloch state but not to, for

example, a d-symmetry Bloch state. These scattering rules

have been numerically verified for the case of the Eshelby

twist strain field around an end-on screw dislocation in a thin

[111] b.c.c. Mo foil taking into account absorption (Mendis &

Hemker, 2008).

There are hence clear differences between electron scat-

tering from a dopant atom and an elastic strain field. Intra-

band scattering can be significant for the former and is

forbidden along a symmetry zone axis for the latter.

Furthermore, in the Howie–Whelan equation interband scat-

tering follows the dipole selection rule for symmetry zone

axes, while for a dopant atom it is largely dependent on the

amplitude of the Bloch waves of interest at the site of the
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dopant atom. Another important difference between the two

scattering mechanisms is the fact that for an elastic strain field

additional scattering rules may apply depending on the nature

of �0g (Hirsch et al., 1965; Nellist et al., 2008). For example, in

two-beam conditions scattering cannot take place if the

displacement R is perpendicular to the reciprocal-lattice

vector g. This is, however, not the case for dopant atoms since

the excess potential � appearing in the integral term of

equation (9) is to a good approximation spherically symmetric.

3. Simulations of dopant-atom scattering

3.1. Simulation procedure

Simulations are carried out for an Mo dopant atom in [001]-

and [111]-oriented b.c.c. Fe. The wavevector of the incident

electrons is parallel to the optic axis and the microscope

operating voltage is 200 kV. The dopant atom is placed at

either a substitutional position or at an octahedral interstice

(Fig. 1a). The interstitial Mo atom will directly overlap with a

projected atom column of Fe in the [001] orientation (Fig. 1c)

but not for the [111] orientation (Fig. 1b). For a substitutional

dopant atom, the excess potential � in equation (9) is equal to

the potential difference between free atoms of Mo and Fe; for

interstitial dopant atoms � is simply the potential of a free Mo

atom. The potential of an atom is determined by inverse

Fourier transforming its Born-atom scattering factor

(Humphreys, 1979) and the atom scattering factors of Kirk-

land (1998) were used for this purpose. The crystal is divided

into 0.1 Å-thick slices in the z direction so that given the

Bloch-wave excitations at the entrance surface of the slice the

corresponding values at the exit surface can be calculated

using a finite-difference method based on equation (9). This

process is carried out within only 1 Å either side of the dopant

atom along the z direction, since beyond 1 Å the excess

potential � is negligible and hence there can be no Bloch-wave

scattering. A total of 121 Bloch waves, based on reciprocal

vectors lying in the ZOLZ plane, were used for the simula-

tions; such a large number of reciprocal vectors are required to

accurately simulate Bloch-wave amplitudes. The Bloch waves

must be suitably normalized so that equation (10) is satisfied.

The choice of the normalizing area is somewhat arbitrary, but

since we have invoked the column approximation this is

chosen to be the smallest unit representing the underlying

symmetry of the crystal. For a [111]-oriented b.c.c. lattice with

C3 rotational symmetry this corresponds to the parallelogram

ABCD in Fig. 1(b), while in the [001] orientation the smallest

unit is the isosceles triangle ABC in Fig. 1(c). Simulations are

performed for dopant atoms at depths of 5 and 45 Å in a 50 Å-

thick foil. At these foil thicknesses absorption is negligible and

is therefore not included in the calculations.

Multislice simulations were carried out using the Temsim

software developed by Kirkland (1998). Supercells containing

a single Mo dopant atom at the centre and having dimensions

in the plane of view larger than 10 Å were used to generate

256 � 256 pixel images. Three distinct slices represented the

ABC stacking sequence in the [111] orientation and two

distinct slices were required for the AB stacking sequence

along [001]. The slice thickness is therefore 0.8 Å for the

former orientation and 1.4 Å for the latter orientation.

Absorption was not taken into account in the multislice

simulations. Only spatial frequencies below 100 mrad were

allowed to contribute to the final exit wave; this procedure was

necessary to suppress the high spatial frequency ‘noise’ which

is absent in experimental HREM images.

3.2. Numerical results of dopant-atom scattering

Consider first b.c.c. Fe along the [111] orientation. Only two

Bloch waves are strongly excited in the perfect crystal, i.e.

Bloch waves 1 and 4 in the dispersion surface. The former

channels along the atom columns (Fig. 2a) while the opposite

is true for the latter (Fig. 2b). The excitations of these two

Bloch states in the perfect crystal are "1 ¼ �0:38 and
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Figure 1
(a) Schematic showing location of a dopant atom (grey circle) in the
octahedral interstice of a b.c.c. lattice. In (b) and (c) the projected
position of the dopant atom is indicated for the crystal viewed along the
[111] and [001] zone axes, respectively. In (c) the dopant atom overlaps
with the central atom column of the host lattice. Regions ABCD and
ABC in (b) and (c) indicate the area used for Bloch-wave normalization
(see text for further details).



"4 ¼ �0:92. Dopant-atom scattering is largely governed by

these two strongly excited states, since from equation (9) the

magnitude of scattering from the pth Bloch state to the qth

state is weighted by the excitation term "pðzÞ. Following

equation (12), the partial scattering contribution from Bloch

state p to Bloch state q at a depth z in equation (9) is given by

SqpðzÞ ¼ "
pðzÞ

R
bp�ðx; y; zÞbq� dx dy; ð13Þ

where we have again ignored the physical constants outside

the integral in equation (9).

Equation (13) was evaluated close to the depth of the

dopant atom where the excess potential � is sharply peaked.

The magnitude of Sqp (p = 1, 4) plotted as a function of the qth

Bloch state for a substitutional Mo atom in [111] Fe is shown

in Fig. 3(a). Intraband scattering of Bloch wave 1 (i.e. S11) is

the dominant scattering mechanism due to Bloch wave 1 being

strongly localized at the dopant atom, which therefore results

in a large value for the integral term in equation (13).

Compare this to the case of elastic strain where intraband

transitions are forbidden along the [111] symmetry zone axis

(Nellist et al., 2008). Bloch wave 4 channels between the atom

columns but, as Fig. 3(a) indicates, for a substitutional dopant

atom, will still undergo significant intraband and interband

transitions, partly due to its larger excitation within the crystal.

The magnitudes of interband transitions in Fig. 3(a) generally

decrease as the Bloch-state index to which the transition is

being made becomes larger. Fig. 3(b) shows the Sqp magni-

tudes for an interstitial Mo atom in [111] Fe plotted as a

function of the qth Bloch state with p = 1, 4. As indicated in

Fig. 1(b), the interstitial dopant atom does not overlap with

any projected atom columns of the host lattice in the [111]

orientation so that the Sq1 values for Bloch wave 1 are negli-

gible. Scattering from Bloch wave 4 is however, considerably

larger since this Bloch state channels between the atom

columns and because the excess potential � is now equal to the

full potential of the Mo atom rather than the potential

difference between Mo and Fe atoms, as was the case for a

substitutional dopant atom. Furthermore, Fig. 3(b) indicates

that for the interstitial dopant atom interband transitions to a

comparatively larger number of Bloch states can take place

from Bloch wave 4.

The electron wavefunction did not undergo a significant

change as it propagated through the [111] crystal containing a

substitutional Mo atom (results not shown) owing to the

comparatively smaller values for Sqp compared to an inter-

stitial Mo atom. In Fig. 4(a) the modulus of the electron

wavefunction is plotted as a function of foil depth at the site of

an interstitial Mo atom in [111]-oriented b.c.c. Fe. Simulation

results for Mo atoms at depths of 5 and 45 Å are presented

together with the result for a perfect crystal. The foil thickness

is 50 Å. In both cases the wavefunction modulus increases

slightly at the dopant-atom position, but after propagating to

the exit surface the modulus for the Mo atom at 5 Å depth is

similar to the perfect crystal, while that for the 45 Å Mo atom

is larger than the perfect crystal. Hence only the Mo atom at

45 Å depth should be visible in the final exit wave. Fig. 4(b)

plots the phase of the incident electrons as a function of depth

relative to the interstitial Mo atom. The phase undergoes a

slight increase close to the dopant atom. This phase change is

easily explained by treating the dopant atom as a weak phase

object and using the physical-optics-based multislice approach

to describe elastic scattering. Here the incident electron

wavefunction undergoes a phase change that is proportional

to the projected potential Vp of the scattering atom (Cowley &
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Figure 2
Parts (a) and (b) are the electron intensity distributions for Bloch waves 1 and 4, respectively, in the dispersion surface of a [111]-oriented b.c.c. Fe crystal.
The positions of the atom columns are marked by the open black circles.



Moodie, 1957; Kirkland, 1998). Since the projected potential

of an Mo atom is higher than that of Fe, the phase should

increase due to dopant-atom scattering, which is consistent

with the results of Fig. 4(b). Furthermore, in the multislice

approach each scattering atom emits a Hüygen wavelet, the

interference of which gives rise to variations in the modulus

during propagation of the electrons through the specimen.

This is also consistent with the change in modulus observed in

Fig. 4(a).

For an [001]-oriented b.c.c. Fe crystal only Bloch waves 1

and 5 in the dispersion surface are strongly excited (the

excitations in a perfect crystal are "1 ¼ 0:46 and "5 ¼ �0:89).

The electron intensity distributions for Bloch waves 1 and 5

are shown in Figs. 5(a) and 5(b), respectively, where it can be

seen that Bloch wave 1 (Bloch wave 5) channels along

(between) the atom columns. Bloch wave 1 is also found to be

degenerate with Bloch wave 2, although the latter is not

excited in the perfect crystal. Bloch wave 2 has an identical

electron intensity distribution to Bloch wave 1 but opposite

polarity. Fig. 6(a) plots the magnitude of Sqp (p = 1, 5) as a

function of the qth Bloch state for a substitutional Mo atom in

[001] Fe. The presence of not one but two Bloch states that are
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Figure 4
(a) Modulus of the electron wavefunction at the site of an interstitial Mo atom plotted as a function of depth in a 50 Å-thick [111] Fe crystal. Results for
an Mo atom at depths of 5 and 45 Å are shown together with the result for a perfect crystal. In (b) the phase of the electron wavefunction is plotted as a
function of depth relative to the dopant atom.

Figure 3
Magnitude of the partial scattering contribution (Sqp) plotted as a function of the qth Bloch state for (a) a substitutional and (b) an interstitial Mo atom in
a [111]-oriented Fe crystal with p = 1, 4. Some of the important transitions (e.g. S11, S44 etc.) are indicated in the figure.



sharply peaked at the atom columns (i.e. Bloch waves 1 and 2)

leads to more than one dominant scattering mechanism i.e. S11

(intraband scattering of Bloch wave 1) and S21 (interband

scattering from Bloch wave 1 to Bloch wave 2). It is important

to realise that this phenomenon does not require both Bloch

states to have a nonzero excitation within the perfect crystal;

only one Bloch state need be strongly excited. Fig. 6(a) also

indicates that interband transitions take place from Bloch

wave 1 to other Bloch states as well as interband scattering

from Bloch wave 5, although the magnitude of these transi-

tions are significantly smaller than S11 and S21. Fig. 6(b) plots

the Sqp (p = 1, 5) magnitudes as a function of the qth Bloch

state for an interstitial Mo atom in [001] Fe. An octahedral

interstitial atom in a b.c.c. crystal directly overlaps with an

atom column of the host atoms when viewed along the [001]

zone axis (Fig. 1c). Hence for an interstitial atom the scat-

tering mechanisms taking place are identical to those observed

for a substitutional dopant atom. The magnitude of the tran-
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Figure 6
Magnitude of the partial scattering contribution (Sqp) plotted as a function of the qth Bloch state for (a) a substitutional and (b) an interstitial Mo atom in
an [001]-oriented Fe crystal with p = 1, 5. Some of the important transitions (e.g. S11, S21 etc.) are indicated in the figure.

Figure 5
Parts (a) and (b) show the electron intensity distributions for Bloch waves 1 and 5, respectively, in the dispersion surface of an [001]-oriented b.c.c. Fe
crystal. The positions of the atom columns are marked by the open black circles.



sitions will, however, be significantly larger, since the excess

potential � is equal to the full potential of an Mo atom rather

than the potential difference between Mo and Fe atoms. This

is consistent with the results in Fig. 6(b).

Fig. 7(a) shows the modulus of the electron wavefunction

plotted as a function of depth in a 50 Å-thick [001] Fe foil at

the site of a substitutional Mo atom. Results are shown for Mo

atoms at depths of 5 and 45 Å as well as for the perfect crystal.

The modulus is seen to increase at the dopant-atom position

but for the Mo atom at 5 Å (45 Å) depth the modulus at the

exit surface is less (greater) than that of the perfect crystal.

Fig. 7(b) plots the phase of the electrons as a function of depth

relative to the dopant atom. The phase increases at the

dopant-atom position as predicted by multislice theory. Figs.

8(a) and (b) plot the modulus and phase of the electron

wavefunction for a 50 Å-thick [001] Fe foil containing an

interstitial Mo atom at depths of 5 and 45 Å. The results are

similar to the [001] substitutional Mo atom, although the

changes to the wavefunction are larger in magnitude. This is

because for the [001] orientation the scattering mechanisms
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Figure 7
(a) Modulus of the electron wavefunction at the site of a substitutional Mo atom plotted as a function of depth in a 50 Å-thick [001] Fe crystal. Results for
an Mo atom at depths of 5 and 45 Å are shown together with the result for a perfect crystal. In (b) the phase of the electron wavefunction is plotted as a
function of depth relative to the dopant atom.

Figure 8
(a) Modulus of the electron wavefunction at the site of an interstitial Mo atom plotted as a function of depth in a 50 Å-thick [001] Fe crystal. Results for
an Mo atom at depths of 5 and 45 Å are shown together with the result for a perfect crystal. In (b) the phase of the electron wavefunction is plotted as a
function of depth relative to the dopant atom.



for an interstitial dopant atom are similar to a substitutional

dopant atom, although the transition magnitudes are larger for

the former (compare also Figs. 6a and 6b). A comparison of

Figs. 4(b) and 8(b) reveals the phase increase at the interstitial

dopant-atom position with respect to the perfect crystal to be

~0.1 rad in the [111] orientation and ~0.7 rad for the [001]

orientation. The larger phase change in the latter orientation

is due to the presence of two Bloch states that are sharply

peaked at the dopant-atom position so that there are effec-

tively two dominant scattering mechanisms. The multislice

theory, however, predicts a constant phase change since the

projected potential Vp is equal to that of a free Mo atom in

both crystallographic orientations.

Previous theoretical work has shown that provided the slice

thickness used in the multislice method is infinitesimally small

(i.e. the so-called ‘impulse limit’) it is equivalent to the Bloch-

wave approach for high-energy electron diffraction

(Goodman & Moodie, 1974; Gratias & Portier, 1983). For

dopant-atom scattering the Bloch-wave model should there-

fore have predicted a phase change that is independent of the

crystallographic orientation. The model is only strictly valid

for small perturbations but repeating the calculations for an

interstitial dopant atom with smaller ‘excess’ potential will not

remove this discrepancy, since from the previous discussion it

has its origins in the magnitude and number of dominant

scattering mechanisms operating in the [001] versus [111] b.c.c.

crystallographic orientations. It is therefore important to

examine the assumptions made in the Bloch-wave perturba-

tion model more closely. First there is the neglect of higher-

order Laue zone (HOLZ) reflections in deriving equation (5).

HOLZ reflections will be more important for the [001]

orientation compared to [111] due to a smaller HOLZ ring

radius for the former (Spence & Zuo, 1992) and could

therefore be a contributing factor to the discrepancy. The

second and perhaps more critical assumption is the use of the

column approximation. Here there are two factors that need

to be considered: (i) the ‘sideways’ scattering of the Bragg

beams that defines the column width and (ii) the magnitude of

elastic diffuse scattering from the defect. For the first the

Bragg angle (�B) for g = 110 diffraction in b.c.c. Fe at 200 kV is

~6 mrad. If Bragg diffraction took place at the entrance

surface then, provided the foil thickness t is less than half the

extinction distance, the beam would have diverged laterally by

a distance of ~2�Bt before leaving the foil. For the 50 Å-thick

foils used in this study this corresponds to a distance of ~0.6 Å

and is much smaller than the nearest-neighbour-atom column

spacings along the [001] and [111] crystal orientations. Higher-

order Bragg beams will lead to a larger lateral spreading but

the intensity of these beams in a thin foil are significantly

smaller compared to the g = 110 beams. Hence as a first

approximation it is reasonable to assume that, given the

simulation conditions, dopant-atom scattering is largely

unaffected by the neighbouring atom columns.

Use of the column approximation, however, does mean that

elastic diffuse scattering is not taken into account. Here

diffuse scattering refers to the intensity transferred between

the Bragg peaks due to defects in an otherwise perfect crystal.

In elastic diffuse scattering, Bloch-state transitions undergo a

change in the transverse wavevector component (kt) with

respect to that of the incident beam electrons; the more

localized the defect the greater the possibility of inducing

transitions with large changes in kt (Howie & Basinski, 1968).

Furthermore, localized defects can also induce transitions with

large changes in the longitudinal wavevector component,

thereby potentially enhancing the role of HOLZ reflections on

the final electron wavefunction (Howie & Basinski, 1968). In

weak-beam images of dislocations for example, elastic diffuse

scattering can lead to a significant shift in the image intensity

peak with respect to the true dislocation core position (Howie

& Sworn, 1970). For a localized defect such as a dopant atom,

Bloch-state transitions with large changes in kt are involved

but due to the weak perturbing potential of a single dopant

atom the magnitudes of the transitions are significantly

smaller compared to (say) a dislocation core. The column

approximation only takes into account those transitions where

kt is unchanged and equal to that of the incident electron

beam. If the magnitudes of these transitions are large

compared to the elastic diffuse scattering, then the error

involved in applying the column approximation will be rela-

tively small. In the next section it will be shown that the Bloch-

wave perturbation model, which applies the column approx-

imation to a single dopant atom, gives results that are quali-

tatively consistent with the more accurate multislice

simulations. Nevertheless, the subtle phase discrepancy noted

above indicates that the Bloch-wave results are quantitatively

inaccurate. It is worth mentioning, however, that the advan-

tage of Bloch waves over multislice simulations is the physical

insight it provides into dopant-atom scattering.

3.3. Comparison with multislice simulations

In this section, the Bloch-wave results presented earlier are

compared with multislice simulations. Figs. 9(a) and 9(b) show

the (multislice-simulated) square modulus of the electron exit

wave for a 50 Å-thick [111] Fe foil containing an interstitial

Mo atom at depths of 4 and 46 Å, respectively (the depths of

the dopant atoms deviate slightly from the nominal values of 5

and 45 Å due to the discrete nature of the multislice method).

As predicted by the Bloch-wave calculations (see Fig. 4a), the

interstitial Mo atom is visible in Fig. 9(b) but not in Fig. 9(a).

Figs. 10(a)/(c) show the (multislice-simulated) square modulus

of the electron exit wave for a 50 Å-thick [001] Fe foil

containing a substitutional/interstitial Mo atom at 6 Å/4 Å

depth. The dopant-atom position is indicated by the arrows in

the figure. The square modulus within the region highlighted

by the rectangular box in Fig. 10(a)/(c) is shown in Fig. 10(b)/

(d). The atom column containing the dopant atom has a

smaller modulus compared to its neighbouring columns. This

decrease in modulus is significant for the interstitial Mo atom

(Fig. 10d) but less noticeable for a substitutional Mo atom

(Fig. 10b). Similarly, Figs. 10(e)–(h) indicate that dopant atoms

closer to the exit surface of a 50 Å-thick [001] Fe foil have a

higher modulus than the atom columns of a perfect crystal,

with the effect being more evident for an interstitial atom.
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These observations are consistent with Figs. 7(a) and 8(a) and

confirm the general validity of the Bloch-wave model.

4. Summary and conclusions

Perturbation theory was used to develop a Bloch-wave model

that describes electron scattering by a dopant atom. The

electron wavefunction in the crystal containing the dopant

atom is expressed as a linear combination of perfect crystal

Bloch states, with the excitation of each Bloch state being

determined by the elastic scattering. Scattering from one

Bloch state to another partly depends on the amplitude of

each Bloch state at the site of the dopant atom. Hence the

scattering mechanisms will depend on whether the dopant

atom is substitutional or interstitial as well as the orientation

of the crystal. The scattering equation for a dopant atom was

compared to the Howie–Whelan equation, which is applicable

to scattering from a slowly varying elastic strain field. Impor-

tant differences between the two are observed; for example,

intraband transitions along symmetry zone axes are allowed

for dopant atoms and, unlike elastic strain fields, there are no

extinction rules. The Bloch-wave model was used to calculate

the electron wavefunction for interstitial/substitutional Mo

atoms in a b.c.c. Fe crystal along the [111] and [001] zone axes.

The results are in general agreement with multislice simula-

tions, although subtle differences do exist. For example, the

Bloch-wave model predicts the phase change of the electrons

(with respect to the perfect crystal) due to scattering by the

dopant atom to vary with the crystallographic orientation,

although in multislice theory the phase change is constant.

This discrepancy is likely to be due to the assumptions made in

the Bloch-wave model, such as the absence of a HOLZ

contribution and, in particular, neglecting the effects of elastic

diffuse scattering.

In many materials systems, changes to the local crystal

strain and chemistry can take place simultaneously. Examples

include interstitial/vacancy dislocation loops and vacancy

clusters, as well as Suzuki segregation to stacking faults

(Mendis et al., 2004) and Cottrell segregation to dislocations

(Cadel et al., 2000). Traditionally, the image contrast of these

defects has been explained by examining scattering from the

elastic strain field only, but it would be interesting to estimate

the contribution from the change in chemistry as well. In

principle, the perturbation theory described in this paper

could combine the effects of elastic strain field and chemistry

into one unified model of Bloch-wave scattering. The excess

potential � would then be due to the change in chemistry as

well as the shift in atomic positions caused by the local

deformation. This is in some ways similar to the suggestion

made by Howie & Basinski (1968) of using a crystal potential

based on the rigid-ion approximation to take account of both

strain and structure-factor contrast simultaneously. It should

be noted, however, than any perturbation model is only an

approximation and it is important to carry out multislice

simulations to test its accuracy. Nevertheless, much physical

insight into electron-beam scattering is gained by using Bloch-

wave methods. Finally, it is also possible to develop a STEM

imaging theory of dopant atoms by applying the Bloch-wave

model to each partial plane wave within the electron probe

separately. Bloch waves have been used previously in STEM
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Figure 9
Multislice-simulated square modulus of the electron exit wave for a 50 Å-thick [111] Fe crystal containing an interstitial Mo atom at depths of (a) 4 Å
and (b) 46 Å. The position of the Mo atom is indicated by the arrows in each figure.



Acta Cryst. (2008). A64, 613–624 B. G. Mendis � Electron scattering by dopant atoms 623

research papers

Figure 10
Multislice-simulated square modulus of the electron exit wave for a 50 Å-thick [001] Fe crystal containing (a) a substitutional Mo atom at 6 Å depth, (c)
an interstitial Mo atom at 4 Å depth, (e) a substitutional Mo atom at 44 Å depth and (g) an interstitial Mo atom at 47 Å depth. The atom column
containing the Mo atom is indicated by the arrows in each figure. The rectangular box in each figure represents the region from which the square modulus
was extracted. Line traces of the square modulus for (a), (c), (e) and (g) are shown in (b), (d), (f) and (h), respectively. The atom column containing the
Mo atom is arbitrarily placed at 0 Å.



calculations but have been restricted to perfect crystals

(Pennycook & Jesson, 1991; Nellist & Pennycook, 1999; Allen

et al., 2003; Findlay et al., 2003). In an incoherent imaging

technique such as HAADF, the signal from a given atom is

proportional to the local electron intensity (i.e. the square

modulus of the electron wavefunction at that position). The

Bloch-wave perturbation method could therefore be used to

understand how dopant-atom scattering would modify the

electron wavefunction and thereby deduce its effect on

dopant-atom contrast as well as optical sectioning experi-

ments. This will be the subject of a separate paper.
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